FINAL JEE-MAIN EXAMINATION - APRIL, 2024 (Held On Monday 08th April, 2024) TIME: 9:00 AM to 12:00 NOON MATHEMATICS **TEST PAPER WITH SOLUTION** Let the circles $C_1 : (x - \alpha)^2 + (y - \beta)^2 = r_1^2$ and **SECTION-A** 3. 1. The value of $k \in \mathbb{N}$ for which the integral C_2 : $(x - 8)^2 + \left(y - \frac{15}{2}\right)^2 = r_2^2$ touch each other $I_n = \int (1 - x^k)^n dx, \ n \in \mathbb{N}$, satisfies 147 $I_{20} = 148 \ I_{21}$ externally at the point (6, 6). If the point (6, 6) divides the line segment joining the centres of the is : circles C_1 and C_2 internally in the ratio 2 : 1, then (1) 10(2) 8 $(\alpha + \beta) + 4(r_1^2 + r_2^2)$ equals (3) 14 (4)7Ans. (4) (1) 110(2) 130(4) 145 (3) 125**Sol.** $I_n = \int_{-\infty}^{1} (1 - x^k)^n .1 dx$ Ans. (2) Sol. $I_n = (1 - x^k)^n . x - nk \int_{-1}^{1} (1 - x^k)^{n-1} . x^{k-1} . dx$ $I_n = nk \int_{0}^{1} [(1 - x^k)^n - (1 - x^k)^{n-1}] dx$ \mathbf{r}_1 $C_1(\alpha,\beta)$ P $I_n = nkI_n - nkI_n$ $\frac{I_n}{I_{n-1}} = \frac{nk}{nk+1}$ $(\alpha,\beta) \stackrel{2:1}{C_1} \stackrel{P}{P} \stackrel{C_2}{C_2} \left(8,\frac{15}{2}\right)$ $\frac{I_{21}}{I_{20}} = \frac{21k}{1+21k}$ $=\frac{147}{148} \implies k=7$ $\therefore \frac{16+\alpha}{3} = 6$ and $\frac{15+\beta}{3} = 6$ 2. The sum of all the solutions of the equation $\Rightarrow (\alpha, \beta) \equiv (2, 3)$ $(8)^{2x} - 16 \cdot (8)^{x} + 48 = 0$ is : Also, $C_1C_2 = r_1 + r_2$ $(1) 1 + \log_6(8)$ $(2) \log_8(6)$ $(3) 1 + \log_8(6)$ $(4) \log_8(4)$ $\Rightarrow \sqrt{(2-8)^2 + (3-\frac{15}{2})^2} = 2r_2 + r_2$ Ans. (3) **Sol.** $(8)^{2x} - 16 \cdot (8)^{x} + 48 = 0$ Put $8^x = t$ $\Rightarrow r_2 = \frac{5}{2} \Rightarrow r_1 = 2r_2 = 5$ $t^2 - 16 + 48 = 0$ \Rightarrow t = 4 or t = 12 $\therefore (\alpha + \beta) + 4(r_1^2 + r_2^2)$ $\Rightarrow 8^{x} = 4$ $8^{x} = 12$ $=5+4\left(\frac{25}{4}+25\right)=130$ $\Rightarrow x = \log_8 x$ $x = \log_8 12$ sum of solution = $\log_8 4 + \log_8 12$ $= \log_8 48 = \log_8 (6.8)$ $= 1 + \log_8 6$

- Let P(x, y, z) be a point in the first octant, whose projection in the xy-plane is the point Q. Let OP = γ ; the angle between OQ and the positive x-axis be θ; and the angle between OP and the positive z-axis be φ, where O is the origin. Then the distance of P from the x-axis is :
- (1) $\gamma \sqrt{1 \sin^2 \phi \cos^2 \theta}$ (2) $\gamma \sqrt{1 + \cos^2 \theta \sin^2 \phi}$ (3) $\gamma \sqrt{1 - \sin^2 \theta \cos^2 \phi}$ (4) $\gamma \sqrt{1 + \cos^2 \phi \sin^2 \theta}$ Ans. (1) Sol. $P(x, y, z), Q(x, y, O); x^2 + y^2 + z^2 = \gamma^2$ $\overline{OQ} = x\hat{i} + y\hat{j}$ $\cos\theta = \frac{x}{\sqrt{x^2 + y^2}}$ $\cos\phi = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$ $\Rightarrow \sin^2\phi = \frac{x^2 + y^2}{x^2 + y^2 + z^2}$ distance of P from x-axis $\sqrt{y^2 + z^2}$ $\Rightarrow \sqrt{\gamma^2 - x^2} \Rightarrow \gamma \sqrt{1 - \frac{x^2}{\gamma^2}}$ $= \gamma \sqrt{1 - \cos^2 \theta \sin^2 \phi}$

5. The number of critical points of the function $f(x) = (x - 2)^{2/3} (2x + 1)$ is : (1) 2 (2) 0 (3) 1 (4) 3 Ans. (1)

Sol. $f(x) = (x - 2)^{2/3} (2x + 1)$ $f'(x) = \frac{2}{3} (x - 2)^{-1/3} (2x + 1) + (x - 2)^{2/3} (2)$ $f'(x) = 2 \times \frac{(2x + 1) + (x - 2)}{3(x - 2)^{1/3}}$ $\frac{3x - 1}{(x - 2)^{1/3}} = 0$ Critical points $x = \frac{1}{3}$ and x = 2 6. Let f(x) be a positive function such that the area bounded by y = f(x), y = 0 from x = 0 to x = a > 0is $e^{-a} + 4a^2 + a - 1$. Then the differential equation, whose general solution is $y = c_1 f(x) + c_2$, where c_1 and c_2 are arbitrary constants, is :

(1)
$$(8e^{x} - 1)\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} = 0$$

(2) $(8e^{x} + 1)\frac{d^{2}y}{dx^{2}} - \frac{dy}{dx} = 0$
(3) $(8e^{x} + 1)\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} = 0$
(4) $(8e^{x} - 1)\frac{d^{2}y}{dx^{2}} - \frac{dy}{dx} = 0$
Ans. (3)
 $\int_{0}^{a} f(x)dx = e^{-a} + 4a^{2} + a - 1$

$$f(a) = -e^{-a} + 8a + 1$$

$$f(x) = -e^{-x} + 8x + 1$$

Now $y = C_1 f(x) + C_2$

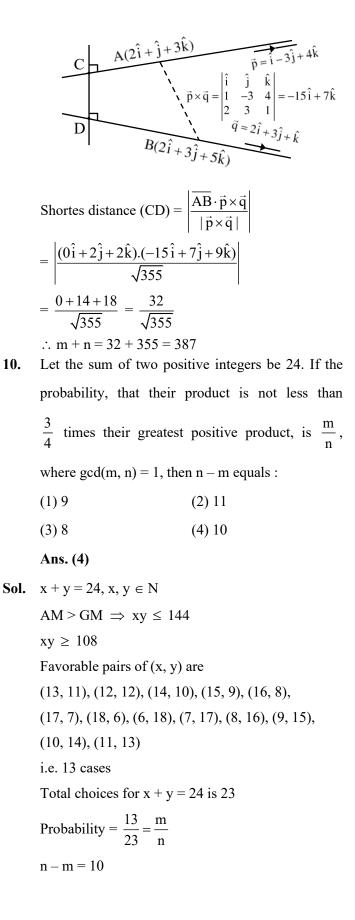
$$\frac{dy}{dx} = C_1 f'(x) = C_1 (e^{-x} + 8) \qquad \dots \dots (1)$$

$$\frac{d^2 y}{dx^2} = -C_1 e^{-x} \implies -e^x \frac{d^2 y}{dx^2}$$

Put in equation (1)

$$\frac{dy}{dx} = -e^x \frac{d^2y}{dx^2} (e^{-x} + 8)$$
$$(8e^x + 1)\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$$

Let $f(x) = 4\cos^3 x + 3\sqrt{3}\cos^2 x - 10$. The number 7. of points of local maxima of f in interval $(0, 2\pi)$ is: (1)1(2) 2(3)3(4) 4Ans. (2) **Sol.** $f(x) = 4\cos^3(x) + 3\sqrt{3}\cos^2(x) - 10$; $x \in (0, 2\pi)$ $\Rightarrow f(x) = 12\cos^2 x [-\sin(x)] + 3\sqrt{3} (2\cos(x)) [-\sin(x)]$ \Rightarrow f'(x) = -6sin(x) cos(x)[2cos(x) + $\sqrt{3}$] $\frac{-}{\frac{\pi}{2}}$ $\frac{-\checkmark_{+}}{\pi}$ $\frac{-}{3\pi}$ 5π 0 local maxima at $x = \frac{5\pi}{6}, \frac{7\pi}{6}$ Let $A = \begin{bmatrix} 2 & a & 0 \\ 1 & 3 & 1 \\ 0 & 5 & b \end{bmatrix}$. If $A^3 = 4A^2 - A - 21I$, where 8. I is the identity matrix of order 3×3 , then 2a + 3bis equal to : (1) - 10(2) - 13(3) - 9(4) - 12Ans. (2) **Sol.** $A^3 - 4A^2 + A + 21 I = 0$ $tr(A) = 4 = 5 + 6 \implies b = -1$ |A| = -21 $-16 + a = -21 \implies a = -5$ 2a + 3b = -139. If the shortest distance between the lines $L_1: \vec{r} = (2+\lambda)\hat{i} + (1-3\lambda)\hat{i} + (3+4\lambda)\hat{k}, \lambda \in \mathbb{R}$ $L_2: \vec{r} = 2(1+\mu)\hat{i} + 3(1+\mu)\hat{j} + (5+\mu)\hat{k}, \mu \in \mathbb{R}$ is $\frac{m}{\sqrt{n}}$, where gcd (m, n) = 1, then the value of m + n equals. (1)384(2) 387 (3) 377 (4) 390Ans. (2)



If sinx = $-\frac{3}{5}$, where $\pi < x < \frac{3\pi}{2}$, 11. then $80(\tan^2 x - \cos x)$ is equal to : (1) 109(2) 108(3) 18(4) 19 Ans. (1) **Sol.** $\sin x = \frac{-3}{5}, \pi < x < \frac{3\pi}{2}$ $\tan x = \frac{3}{4} \cos x = -\frac{4}{5}$ $80(\tan^2 x - \cos x)$ $= 80\left(\frac{9}{16} + \frac{4}{5}\right) = 45 + 64 = 109$ Let I(x) = $\int \frac{6}{\sin^2 x (1 - \cot x)^2} dx$. If I(0) = 3, then 12. $I\left(\frac{\pi}{12}\right)$ is equal to : (1) $\sqrt{3}$ (2) $3\sqrt{3}$ (3) $6\sqrt{3}$ (4) $2\sqrt{3}$ Ans. (2) Sol. $I(x) = \int \frac{6dx}{\sin^2 x (1 - \cot x)^2} = \int \frac{6 \csc^2 x \, dx}{(1 - \cot x)^2}$ Put $1 - \cot x = t$ $\csc^2 x \, dx = dt$ $I = \int \frac{6dt}{t^2} = \frac{-6}{t} + c$ $I(x) = \frac{-6}{1 - \cot x}c, c = 3$ $I(x) = 3 - \frac{6}{1 - \cot x}, I\left(\frac{\pi}{12}\right) = 3 - \frac{6}{1 - (2 + \sqrt{3})}$ $I\left(\frac{\pi}{12}\right) = 3 + \frac{6}{\sqrt{3}+1} = 3 + \frac{6(\sqrt{3}-1)}{2} = 3\sqrt{3}\sqrt{2}$

13. The equations of two sides AB and AC of a triangle ABC are 4x + y = 14 and 3x - 2y = 5, respectively. The point $\left(2, -\frac{4}{3}\right)$ divides the third side BC internally in the ratio 2 : 1. The equation of the side BC is : (1) x - 6y - 10 = 0 (2) x - 3y - 6 = 0

(3) x + 3y + 2 = 0 (4) x + 6y + 6 = 0Ans. (3)

A

$$4x + y = 14$$
 $3x - 2y = 5$
B $(x_1, 14 - 4x_1)$
 $P\left(2, -\frac{4}{3}\right)$
 $C\left(x_2, \frac{3x_2 - 5}{2}\right)$

$$\frac{2x_2 + x_1}{3} = 2, \frac{2\left(\frac{3x_2 - 5}{2}\right) + (14 - 4x_1)}{3} = \frac{-4}{3}$$

$$2x_2 + x_1 = 6, 3x_2 - 4x_1 = -13$$

$$x_2 = 1, x_1 = 4$$
So, C(1, -1), B(4, -2)

$$m = \frac{-1}{3}$$
Equation of BC : $y + 1 = \frac{-1}{3}(x - 1)$

$$3y + 3 = -x + 1$$
$$x + 3y + 2 = 0$$

14. Let [t] be the greatest integer less than or equal tot. Let A be the set of al prime factors of 2310 and

$$f: A \to \mathbb{Z}$$
 be the function $f(x) = \left[\log_2 \left(x^2 + \left[\frac{x^3}{5} \right] \right) \right].$

The number of one-to-one functions from A to the range of f is :

(1) 20	(2) 120
(3) 25	(4) 24

Ans. (2)

Sol. $N = 2310 = 231 \times 10$

$$= 3 \times 11 \times 7 \times 2 \times 5$$

 $A = \{2, 3, 5, 7, 11\}$

$$f(\mathbf{x}) = \left[\log_2 \left(\mathbf{x}^2 + \left[\frac{\mathbf{x}^3}{5} \right] \right) \right]$$
$$f(2) = \left[\log_2(5) \right] = 2$$

$$f(3) = [\log_2(14)] = 3$$

$$f(5) = [\log_2(25 + 25)] = 5$$

$$f(7) = [\log_2(117)] = 6$$

$$f(11) = [\log_2 387] = 8$$

Range of
$$f: B = \{2, 3, 5, 6, 8\}$$

No. of one-one functions = 5! = 120

15. Let z be a complex number such that |z + 2| = 1

and
$$\operatorname{Im}\left(\frac{z+1}{z+2}\right) = \frac{1}{5}$$
. Then the value of $\left|\operatorname{Re}\left(\overline{z+2}\right)\right|$
is:
(1) $\frac{\sqrt{6}}{2}$ (2) $\frac{1+\sqrt{6}}{2}$

(1)
$$\frac{1}{5}$$
 (2) $\frac{1}{5}$
(3) $\frac{24}{5}$ (4) $\frac{2\sqrt{6}}{5}$

Ans. (4)

Sol.
$$|z+2| = 1$$
, $Im\left(\frac{z+1}{z+2}\right) = \frac{1}{5}$
Let $z+2 = \cos\theta + i\sin\theta$

$$\frac{1}{z+2} = \cos\theta - i\sin\theta$$
$$\Rightarrow \frac{z+1}{z+2} = 1 - \frac{1}{z+2} = 1 - (\cos\theta - i\sin\theta)$$
$$= (1 - \cos\theta) + i\sin\theta$$
$$\operatorname{Im}\left(\frac{z+1}{z+2}\right) = \sin\theta, \sin\theta = \frac{1}{5}$$
$$\cos\theta = \pm \sqrt{1 - \frac{1}{25}} = \pm \frac{2\sqrt{6}}{5}$$
$$\left|\operatorname{Re}(\overline{z+2})\right| = \frac{2\sqrt{6}}{5}$$

If the set $R = \{(a, b) ; a + 5b = 42, a, b \in \mathbb{N} \}$ 16. has m elements and $\sum_{n=1}^{m} (1+i^{n!}) = x + iy$, where $I = \sqrt{-1}$, then the value of m + x + y is : (1) 8(2) 12(3) 4(4) 5Ans. (2) **Sol.** $a + 5b = 42, a, b \in N$ a = 42 - 5b, b = 1, a = 37b = 2, a = 32b = 3, a = 27÷ b = 8, a = 2R has "8" elements \Rightarrow m = 8 $\sum_{n=1}^{8} (1 - i^{n!}) = x + iy$ for $n \ge 4$, $i^{n!} = 1$ $\Rightarrow (1-i) + (1-i^{2!}) + (1-i^{3!})$ = 1 - I + 2 + 1 + 1= 5 - I = x + iym + x + y = 8 + 5 - 1 = 12

17. For the function $f(x) = (\cos x) - x + 1$, $x \in \mathbb{R}$, between the following two statements (S1) f(x) = 0 for only one value of x is $[0, \pi]$. (S2) f(x) is decreasing in $\left| 0, \frac{\pi}{2} \right|$ and increasing in $\left|\frac{\pi}{2},\pi\right|.$ (1) Both (S1) and (S2) are correct (2) Only (S1) is correct (3) Both (S1) and (S2) are incorrect (4) Only (S2) is correct Ans. (2) **Sol.** $f(x) = \cos x - x + 1$ $f(x) = -\sin x - 1$ f is decreasing $\forall x \in R$ f(x) = 0 $f(0) = 2, f(\pi) = -\pi$ f is strictly decreasing in $[0, \pi]$ and $f(0).f(\pi) < 0$ \Rightarrow only one solution of f(x) = 0S1 is correct and S2 is incorrect.

1

The set of all α , for which the vector 18. $\vec{a} = \alpha t \hat{i} + 6 \hat{j} - 3 \hat{k}$ and $\vec{b} = t \hat{i} - 2 \hat{j} - 2 \alpha t \hat{k}$ are

inclined at an obtuse angle for all $t \in \mathbb{R}$ is :

(1)
$$[0, 1)$$
 (2) $(-2, 0]$
(3) $\left(-\frac{4}{3}, 0\right]$ (4) $\left(-\frac{4}{3}, 1\right)$

Ans. (3)

Sol. $\vec{a} = \alpha t \hat{i} + 6 \hat{j} - 3 \hat{k}$ $\vec{b} = t\hat{i} - 2\hat{j} - 2\alpha t\hat{k}$ so $\vec{a}.\vec{b} < 0$, $\forall t \in \mathbb{R}$ $\alpha t^2 - 12 + 6\alpha t < 0$ $\alpha t^2 + 6\alpha t - 12 < 0, \forall t \in \mathbb{R}$ $\alpha < 0$, and D < 0 $36\alpha^2 + 48\alpha < 0$ $12\alpha(3\alpha+4) < 0$ $\frac{-4}{3} < \alpha < 0$ also for a = 0, $\vec{a} \cdot \vec{b} < 0$ hence a $\alpha \in \left(\frac{-4}{3}, 0\right]$

19. Let
$$y = y(x)$$
 be the solution of the differential equation $(1 + y^2)e^{\tan x} dx + \cos^2 x (1 + e^{2\tan x}) dy = 0$,
 $y(0) = 1$. Then $y\left(\frac{\pi}{4}\right)$ is equal to :
(1) $\frac{2}{e}$ (2) $\frac{1}{e^2}$
(3) $\frac{1}{e}$ (4) $\frac{2}{e^2}$
Ans. (3)
Sol. $(1 + y^2)e^{\tan x} dx + \cos^2 x (1 + e^{2\tan x}) dy = 0$
 $\int \frac{\sec^2 x e^{\tan x}}{1 + e^{2\tan x}} dx + \int \frac{dy}{1 + y^2} = C$
 $\Rightarrow \tan^{-1}(e^{\tan x}) + \tan^{-1} y = C$
for $x = 0$, $y = 1$, $\tan^{-1}(1) + \tan^{-1}1 = C$
 $C = \frac{\pi}{2}$
 $\tan^{-1}(e^{\tan x}) + \tan^{-1} y = \frac{\pi}{2}$
Put $x = \pi$, $\tan^{-1} e + \tan^{-1} y = \frac{\pi}{2}$
 $\tan^{-1} y = \cot^{-1} e$
 $y = \frac{1}{e}$
20. Let $H : \frac{-x^2}{a^2} + \frac{y^2}{b^2} = 1$ be the hyperbola, whose eccentricity is $\sqrt{3}$ and the length of the latus rectum is $4\sqrt{3}$. Suppose the point (α , 6), $\alpha > 0$
lies on H. If β is the product of the focal distances of the point (α , 6), then $\alpha^2 + \beta$ is equal to :
(1) 170 (2) 171
(3) 169 (4) 172

Ans. (2)

H: $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$, $e = \sqrt{3}$ $e = \sqrt{1 + \frac{a^2}{b^2}} = \sqrt{3} \implies \frac{a^2}{b^2} = 2$ $a^2 = 2b^2$ length of L.R. = $\frac{2a^2}{b} = 4\sqrt{3}$ $a = \sqrt{6}$ $P(\alpha, 6)$ lie on $\frac{y^2}{3} - \frac{x^2}{6} = 1$ $12 - \frac{\alpha^2}{6} = 1 \Longrightarrow \alpha^2 = 66$ Foci = $(0, \pm be) = (0, 3) \& (0, -3)$ Let $d_1 \& d_2$ be focal distances of P(α , 6) $d_1 = \sqrt{\alpha^2 + (6 + be)^2}$, $d_2 = \sqrt{\alpha^2 + (6 - be)^2}$ $d_1 = \sqrt{66 + 81}, \ d_2 = \sqrt{66 + 9}$ $\beta = d_1 d_2 = \sqrt{147 \times 75} = 105$ $\alpha^2 + \beta = 66 + 105 = 171$

SECTION-B

21. Let $A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$. If the sum of the diagonal elements of A^{13} is 3^n , then n is equal to _____. Ans. (7)

Sol. A = $\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$

$$A^{2} = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -3 \\ 3 & 0 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 3 & -3 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -6 \\ 6 & -3 \end{bmatrix}$$

$$A^{4} = \begin{bmatrix} 3 & -6 \\ 6 & -3 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -9 \\ 9 & -9 \end{bmatrix}$$

$$A^{5} = \begin{bmatrix} 0 & -9 \\ 9 & -9 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -9 & -9 \\ 9 & -18 \end{bmatrix}$$

$$A^{6} = \begin{bmatrix} -9 & -9 \\ 9 & -18 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -27 & 0 \\ 0 & -27 \end{bmatrix}$$

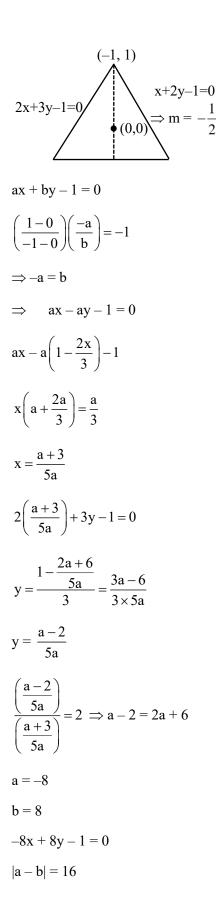
$$A^{7} = \begin{bmatrix} -27 & -0 \\ 0 & -27 \end{bmatrix} \begin{bmatrix} -54 & 27 \\ -27 & -27 \end{bmatrix} = \begin{bmatrix} 3^{6} \times 2 & -27^{2} \\ 27^{2} & 3^{6} \end{bmatrix}$$

$$3^{7} = 3^{n} \implies n = 7$$

22. If the orthocentre of the triangle formed by the lines 2x + 3y - 1 = 0, x + 2y - 1 = 0 and ax + by - 1 = 0, is the centroid of another triangle, whose circumecentre and orthocentre respectively are (3, 4) and (-6, -8), then the value of |a - b| is

Ans. (16)
Sol.
$$2x + 3y - 1 = 0$$

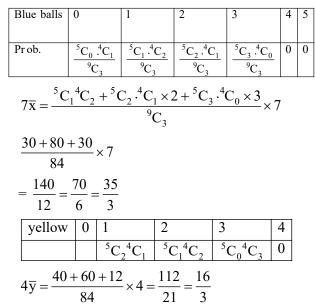
 $x + 2y - 1 = 0$
 $ax + by - 1 = 0$
 $(-6, -8) \xrightarrow{G} G 0(3, 4)$
H $(6, 6)$
 $(\frac{6-6}{3}, \frac{8-8}{3})$
 $= (0, 0)$



23. Three balls are drawn at random from a bag containing 5 blue and 4 yellow balls. Let the random variables X and Y respectively denote the number of blue and Yellow balls. If \overline{X} and \overline{Y} are the means of X and Y respectively, then $7\overline{X} + 4\overline{Y}$ is equal to _____.

Ans. (17)

Sol.



24. The number of 3-digit numbers, formed using the digits 2, 3, 4, 5 and 7, when the repetition of digits is not allowed, and which are not divisible by 3, is equal to

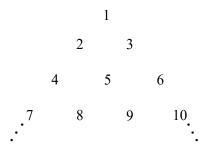
Ans. (36)

Sol. 2, 3, 4, 5, 7

total number of three digit numbers not divisible by 3 will be formed by using the digits

(4, 5, 7) (3, 4, 7) (2, 5, 7) (2, 4, 7) (2, 4, 5) (2, 3, 5)number of ways = $6 \times 3! = 36$

25. Let the positive integers be written in the form :



If the kth row contains exactly k numbers for every natural number k, then the row in which the number 5310 will be, is _____.

Ans. (103)

Sol.
$$S = 1 + 2 + 4 + 7 + \dots + T_n$$

 $S = 1 + 2 + 4 + \dots$
 $Tn = 1 + 1 + 2 + 3 + \dots + (T_n - T_{n-1})$
 $T_n = 1 + \left(\frac{n-1}{2}\right)[2 + (n-2) \times 1]$
 $T_n = 1 + 1 + \frac{n(n-1)}{2}$
 $n = 100$ $T_n = 1 + \frac{100 \times 99}{2} = 4950 + 1$
 $n = 101$ $T_n = 1 + \frac{101 \times 100}{2} = 5050 + 1 = 5051$
 $n = 102$ $T_n = 1 + \frac{102 \times 101}{2} = 5151 + 1 = 5152$
 $n = 103$ $T_n = 1 + \frac{103 \times 102}{2} = 5254$
 $n = 104$ $T_n = 1 + \frac{104 \times 103}{2} = 5357$

26. If the range of $f(\theta) = \frac{\sin^2 \theta + 3\cos^2 \theta}{\sin^4 \theta + \cos^2 \theta}, \theta \in \mathbb{R}$ is

 $[\alpha, \beta]$, then the sum of the infinite G.P., whose first term is 64 and the common ratio is $\frac{\alpha}{\beta}$, is equal to

Ans. (96)

_.

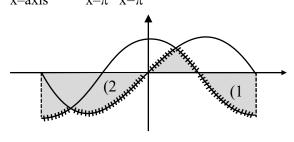
$$\begin{split} & \textbf{Sol.} \quad f(\theta) = \frac{\sin^4 \theta + 3\cos^2 \theta}{\sin^4 \theta + \cos^2 \theta} \\ & f(\theta) = 1 + \frac{2\cos^2 \theta}{\sin^4 \theta + \cos^2 \theta} \\ & f(\theta) = \frac{2\cos^2 \theta}{\cos^4 \theta - \cos^2 \theta + 1} + 1 \\ & f(\theta) = \frac{2\cos^2 \theta}{\cos^2 \theta + \sec^2 \theta - 1} + 1 \\ & f(\theta)|_{\min} = 1 \\ & f(\theta)|_{\min} = 3 \\ & \textbf{S} = \frac{64}{1 - 1/3} = 96 \\ \\ \textbf{27.} \quad \text{Let } \alpha = \sum_{r=0}^{n} (4r^2 + 2r + 1)^n C_r \\ & \text{ and } \beta = \left(\sum_{r=0}^{n} \frac{^n C_r}{r + 1}\right) + \frac{1}{n + 1} \cdot \text{If } 140 < \frac{2\alpha}{\beta} < 281, \\ & \text{ then the value of n is } \\ & \textbf{Ans. (5)} \\ \\ \textbf{Sol.} \quad \alpha = \sum_{r=0}^{n} (4r^2 + 2r + 1)^n C_r \\ & \alpha = 4\sum_{r=0}^{n} (r^2 \cdot \frac{n}{r} \cdot ^{n-1} C_{r-1} + 2\sum_{r=0}^{n} r \cdot \frac{n}{r} \cdot ^{n-1} C_r + \sum_{r=0}^{n} ^n C_r \\ & +4n\sum_{r=0}^{n} r^{-1} C_{r-1} + 2n\sum_{r=0}^{n} r \cdot \frac{1}{r} \cdot ^{n-1} C_r \\ & \alpha = 4n(n-1) \cdot 2^{n-2} + 4n \cdot 2^{n-1} + 2n \cdot 2^{n-1} + 2^n \\ & \alpha = 2n^{n-2} [4n(-1) + 8n + 4n + 4] \\ & \alpha = 2n(n+1)^2 \\ & \beta = \sum_{r=0}^{n} \frac{^n C_r}{r+1} + \frac{1}{n+1} \\ & = \sum_{r=0}^{n} \frac{^{n+1} C_{r+1}}{n+1} + \frac{1}{n+1} \\ & = \frac{1}{n+1} (1 + r^{n+1} C_1 + \dots + r^{n+1} C_{n+1}) \\ & = \frac{2^{n+1}}{n+1} \\ & \frac{2\alpha}{\beta} = \frac{2^{n+1}(n+1)^2}{2^{n+1}} \cdot (n+1) = (n+1)^3 \\ & 140 < (n+1)^3 = 125 \\ & n = 6 \Rightarrow (n+1)^3 = 216 \\ & n = 6 \Rightarrow (n+1)^3 = 343 \\ & \therefore n = 5 \\ \end{split}$$

28.	Let $\vec{a} = 9\hat{i} - 13\hat{j} + 25\hat{k}, \ \vec{b} = 3\hat{i} + 7\hat{j} - 13\hat{k}$ and
	$\vec{c} = 17\hat{i} - 2\hat{j} + \hat{k}$ be three given vectros. If \vec{r} is a
	vector such that $\vec{r} \times \vec{a} = (\vec{b} + \vec{c}) \times \vec{a}$ and $\vec{r} \cdot (\vec{b} - \vec{c}) = 0$,
	then $\frac{ 593\vec{r} + 67\vec{a} ^2}{(593)^2}$ is equal to
	Ans. (569)
Sol.	$\vec{a} = 9\hat{i} - 13\hat{j} + 25\hat{k}$
	$\vec{\mathbf{b}} = 3\hat{\mathbf{i}} + 7\hat{\mathbf{j}} - 13\hat{\mathbf{k}}$
	$\vec{c} = 17\hat{i} - 2\hat{j} + \hat{k}$
	$\vec{b} + \vec{c} = 20\hat{i} + 5\hat{j} - 12\hat{k}$
	$\vec{b} - \vec{c} = -14\hat{i} + 9\hat{j} - 14\hat{k}$
	$(\vec{r} - (\vec{b} + \vec{c})) \times \vec{a} = 0$
	$r - (\vec{b} + \vec{c}) = \lambda \vec{a}$
	$\vec{r} = \lambda \vec{a} + \vec{b} + \vec{c}$
	But $\vec{r}.(\vec{b}-\vec{c})=0$
	$\Rightarrow (\lambda \vec{a} + \vec{b} + \vec{c}).(\vec{b} - \vec{c}) = 0$
	$\Rightarrow \lambda \vec{a}.\vec{b} + \vec{b}.\vec{b} + \vec{c}.\vec{b} - \lambda \vec{a}.\vec{c} - \vec{b}.\vec{c} - \vec{c}.\vec{c} = 0$
	$\lambda = \frac{\vec{c}.\vec{c} - \vec{b}.\vec{b}}{\vec{a}.\vec{b} - \vec{a}.\vec{c}} = \frac{294 - 227}{-389 = 204} = \frac{-67}{593}$
	$\therefore \vec{\mathbf{r}} = \vec{\mathbf{b}} + \vec{\mathbf{c}} - \frac{67}{593}\vec{\mathbf{a}}$
	$\Rightarrow 593 \vec{r} + 67 \vec{a} = 593 (\vec{b} + \vec{c})$
	$\Rightarrow \vec{b} + \vec{c} ^2 = 569$

Let the area of the region enclosed by the curve 29. $y = \min\{sinx, cosx\}$ and the x-axis between $x = -\pi$ to $x = \pi$ be A. Then A^2 is equal to _____.

Ans. (16)

Sol. $y = \min\{\sin x, \cos x\}$ x-axis x $-\pi$ x $=\pi$



$$\int_{0}^{\pi/4} \sin x = (\cos x)_{\pi/4}^{0} = 1 - \frac{1}{\sqrt{2}}$$

$$\int_{-\pi}^{-3\pi/4} (\sin x - \cos x) = (-\cos x - \sin x)_{-\pi}^{-3\pi/4}$$

$$= (\cos x + \sin x)_{-3\pi/4}^{-\pi}$$

$$= (-1+0) - \left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\right)$$

$$= -1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$$

$$\int_{\pi/4}^{\pi/2} \cos x \, dx = (\sin x)_{\pi/4}^{\pi/2} = 1 - \frac{1}{\sqrt{2}}$$

$$A = 4$$

$$A^{2} = 16$$
The value of
$$\lim_{x \to 0} 2\left(\frac{1 - \cos x \sqrt{\cos 2x} \sqrt[3]{\cos 3x} \dots \sqrt[10]{\cos 10x}}{x^{2}}\right)$$

Ans. (55)

30.

$$\lim_{x \to 0} 2 \left(\frac{1 - \left(1 - \frac{x^2}{2!}\right) \left(1 - \frac{4x^2}{2!}\right) \left(1 - \frac{9x^2}{2!}\right) \dots \left(1 - \frac{100x^2}{2!}\right)}{x^2} \right)$$

is

By expansion

$$\lim_{x \to 0} \frac{2\left(1 - \left(1 - \frac{x^2}{2}\right)\right)\left(1 - \frac{1}{2} \cdot \frac{4x^2}{2}\right)\left(1 - \frac{1}{3} \cdot \frac{9x^2}{2}\right) \dots \left(1 - \frac{1}{10} \cdot \frac{100x^2}{2}\right)}{x^2}$$
$$\lim_{x \to 0} 2\left(\frac{1 - \left(1 - \frac{x^2}{2}\right)\left(1 - \frac{2x^2}{2}\right)\left(1 - \frac{3x^2}{2}\right) \dots \left(1 - \frac{10x^2}{2}\right)}{x^2}\right)$$
$$\frac{2\left(1 - 1 + x^2\left(\frac{1}{2} + \frac{2}{2} + \frac{3}{2} + \dots + \frac{10}{2}\right)\right)}{x^2}$$
$$2\left(\frac{1}{2} + \frac{2}{2} + \frac{3}{2} + \dots + \frac{10}{2}\right)$$
$$1 + 2 + \dots + 10 = \frac{10 \times 11}{2} = 55$$

PHYSICS

SECTION-A

31. Three bodies A, B and C have equal kinetic energies and their masses are 400 g, 1.2 kg and 1.6 kg respectively. The ratio of their linear momenta is :

(1) $1:\sqrt{3}:2$	(2) 1: $\sqrt{3}$: $\sqrt{2}$
(3) $\sqrt{2}:\sqrt{3}:1$	(4) $\sqrt{3}:\sqrt{2}:1$

Ans. (1)

Sol. $KE = \frac{P^2}{2m}$ $P \propto \sqrt{m}$ Hence, $P_A : P_B : P_C$

$$=\sqrt{400}:\sqrt{1200}:\sqrt{1600} = 1:\sqrt{3}:2$$

32. Average force exerted on a non-reflecting surface at normal incidence is 2.4×10^{-4} N. If 360 W/cm² is the light energy flux during span of 1 hour 30 minutes. Then the area of the surface is:

(1) 0.2 m^2	(2) 0.02 m^2
(3) 20 m^2	(4) 0.1 m^2

Ans. (2)

Sol. Pressure $= \frac{I}{C} = \frac{F}{A}$ $\Rightarrow \frac{360}{10^{-4} \times 3 \times 10^8} = \frac{2.4 \times 10^{-4}}{A}$ $\Rightarrow A = 2 \times 10^{-2} \text{ m}^2 = 0.02 \text{ m}^2$

33. A proton and an electron are associated with same de-Broglie wavelength. The ratio of their kinetic energies is:

(Assume h = 6.63 \times 10^{-34} J s, m_e = 9.0 \times 10^{-31} kg and m_p = 1836 times $m_e)$

(1) 1 : 1836
(2) 1 :
$$\frac{1}{1836}$$

(3) 1 : $\frac{1}{\sqrt{1836}}$
(4) 1 : $\sqrt{1836}$

TEST PAPER WITH SOLUTION

Ans. (1)

Sol. λ is same for both

$$P = \frac{h}{\lambda}$$
 same for both
$$P = \sqrt{2mK}$$

Hence,

$$K \propto \frac{1}{m}$$
$$\Rightarrow \frac{KE_{p}}{KE_{e}} = \frac{m_{e}}{m_{p}} = \frac{1}{1836}$$

34. A mixture of one mole of monoatomic gas and one mole of a diatomic gas (rigid) are kept at room temperature (27°C). The ratio of specific heat of gases at constant volume respectively is:

(1)
$$\frac{7}{5}$$
 (2) $\frac{3}{2}$
(3) $\frac{3}{5}$ (4) $\frac{5}{3}$

Ans. (3)

Sol.
$$\frac{(C_v)_{mono}}{(C_v)_{dia}} = \frac{\frac{3}{2}R}{\frac{5}{2}R} = \frac{3}{5}$$

35. In an expression $a \times 10^b$:

(1) a is order of magnitude for $b \le 5$

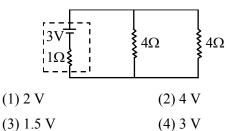
(2) b is order of magnitude for $a \le 5$

- (3) b is order of magnitude for $5 < a \le 10$
- (4) b is order of magnitude for $a \ge 5$

Sol. $a \times 10^b$

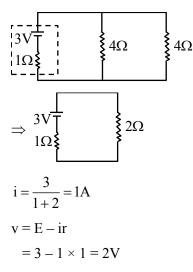
- if $a \le 5$ order is b
 - a > 5 order is b + 1

36. In the given circuit, the terminal potential difference of the cell is :



Ans. (1)

Sol.



37. Binding energy of a certain nucleus is 18×10^8 J. How much is the difference between total mass of all the nucleons and nuclear mass of the given nucleus:

(1) 0.2 µg	(2) 20 µg
(3) 2 µg	(4) 10 μg

Ans. (2)

Sol. $\Delta mc^2 = 18 \times 10^8$

 $\Delta m \times 9 \times 10^{16} = 18 \times 10^{8}$

$$\Delta m = 2 \times 10^{-8} \,\mathrm{kg} = 20 \,\,\mathrm{\mu g}$$

38. Paramagnetic substances:

A. align themselves along the directions of external magnetic field.

- B. attract strongly towards external magnetic field.
- C. has susceptibility little more than zero.
- D. move from a region of strong magnetic field to weak magnetic field.

Choose the **most appropriate** answer from the options given below:

(1) A, B, C, D
(2) B, D Only
(3) A, B, C Only
(4) A, C Only

Ans. (4)

Sol. A, C only

39. A clock has 75 cm, 60 cm long second hand and minute hand respectively. In 30 minutes duration the tip of second hand will travel x distance more than the tip of minute hand. The value of x in meter is nearly (Take $\pi = 3.14$) :

(1) 139.4	(2) 140.5
(3) 220.0	(4) 118.9

Ans. (1)

Sol.
$$x_{\min} = \pi \times r_{\min}$$

$$= \pi \times \frac{60}{100} \mathrm{m}.$$

 $x_{second} = 30 \times 2\pi \times r_{second}$

$$= 30 \times 2\pi \times \frac{75}{100}$$

$$x = x_{second} - x_{min}$$
$$= 139.4 m$$

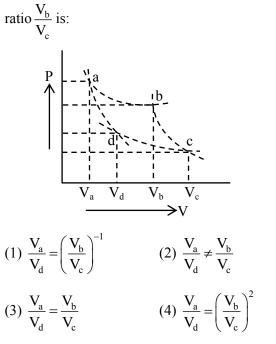
40. Young's modulus is determined by the equation given by $Y = 49000 \frac{m}{\ell} \frac{dyne}{cm^2}$ where M is the mass and ℓ is the extension of wire used in the experiment. Now error in Young modules(Y) is estimated by taking data from M- ℓ plot in graph paper. The smallest scale divisions are 5 g and 0.02 cm along load axis and extension axis respectively. If the value of M and ℓ are 500 g and 2 cm respectively then percentage error of Y is :

(1) 0.2 %	(2) 0.02 %
(3) 2 %	(4) 0.5 %

Ans. (3)

Sol.
$$\frac{\Delta Y}{Y} = \frac{\Delta m}{m} + \frac{\Delta \ell}{\ell}$$
$$= \frac{5}{500} + \frac{0.02}{2} = 0.01 + 0.01$$
$$\frac{\Delta Y}{Y} = 0.02 \implies \% \frac{\Delta Y}{Y} = 2\%$$

41. Two different adiabatic paths for the same gas intersect two isothermal curves as shown in P-V diagram. The relation between the ratio $\frac{V_a}{V_a}$ and the



Ans. (3)

Sol. For adiabatic process

$$\begin{split} \mathbf{T} \mathbf{V}^{\gamma-1} &= \text{constant} \\ \mathbf{T}_{a} \cdot \mathbf{V}_{a}^{\gamma-1} &= \mathbf{T}_{d} \cdot \mathbf{V}_{d}^{\gamma-1} \\ & \left(\frac{\mathbf{V}_{a}}{\mathbf{V}_{d}}\right)^{\gamma-1} &= \frac{\mathbf{T}_{d}}{\mathbf{T}_{a}} \\ & \mathbf{T}_{b} \cdot \mathbf{V}_{b}^{\gamma-1} &= \mathbf{T}_{c} \cdot \mathbf{V}_{c}^{\gamma-1} \\ & \left(\frac{\mathbf{V}_{b}}{\mathbf{V}_{c}}\right)^{\gamma-1} &= \frac{\mathbf{T}_{c}}{\mathbf{T}_{b}} \\ & \frac{\mathbf{V}_{a}}{\mathbf{V}_{d}} &= \frac{\mathbf{V}_{b}}{\mathbf{V}_{c}} \qquad \left(\begin{array}{c} \because \mathbf{T}_{d} = \mathbf{T}_{c} \\ & \mathbf{T}_{a} = \mathbf{T}_{b} \end{array} \right) \end{split}$$

42. Two planets A and B having masses m₁ and m₂ move around the sun in circular orbits of r₁ and r₂ radii respectively. If angular momentum of A is L and that

of B is 3L, the ratio of time period $\left(\frac{T_A}{T_B}\right)$ is:

$$(1) \left(\frac{r_2}{r_1}\right)^{\frac{3}{2}} \qquad (2) \left(\frac{r_1}{r_2}\right)^{3} \\ (3) \frac{1}{27} \left(\frac{m_2}{m_1}\right)^{3} \qquad (4) 27 \left(\frac{m_1}{m_2}\right)^{3}$$

Ans. (3)

Sol.
$$\frac{\pi r_1^2}{T_A} = \frac{L}{2m_1} \quad \dots \dots \quad (1)$$
$$\frac{\pi r_2^2}{T_B} = \frac{3L}{2m_2} \quad \dots \dots \quad (2)$$
$$\Rightarrow \frac{T_A}{T_B} = 3 \cdot \frac{m_1}{m_2} \cdot \left(\frac{r_1}{r_2}\right)^2$$
$$\left(\frac{T_A}{T_B}\right)^2 = \left(\frac{r_1}{r_2}\right)^3 \Rightarrow \left(\frac{r_1}{r_2}\right)^2 = \left(\frac{T_A}{T_B}\right)^{\frac{4}{3}}$$
$$\Rightarrow \frac{1}{27} \cdot \left(\frac{m_2}{m_1}\right)^3 = \left(\frac{T_A}{T_B}\right)$$

43. A LCR circuit is at resonance for a capacitor C, inductance L and resistance R. Now the value of resistance is halved keeping all other parameters same. The current amplitude at resonance will be now:

(1) Zero	(2) double
(3) same	(4) halved

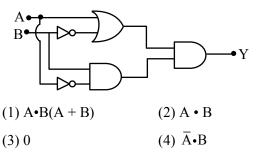
Ans. (2)

Sol. In resonance Z = R

$$I = \frac{V}{R}$$
$$R \rightarrow halved$$
$$\Rightarrow I \rightarrow 2I$$

I becomes doubled.

44. The output Y of following circuit for given inputs is :



Ans. (3)

Sol. By truth table

А	В	Y	
0	0	0	
0	1	0	
1	0	0	
1	1	0	

45. Two charged conducting spheres of radii a and b are connected to each other by a conducting wire. The ratio of charges of the two spheres respectively is:

(1)
$$\sqrt{ab}$$
 (2) ab
(3) $\frac{a}{b}$ (4) $\frac{b}{a}$

Ans. (3)

Sol. Potential at surface will be same

$$\frac{\mathrm{K}\mathrm{q}_1}{\mathrm{a}} = \frac{\mathrm{K}\mathrm{q}_2}{\mathrm{b}}$$
$$\frac{\mathrm{q}_1}{\mathrm{q}_2} = \frac{\mathrm{a}}{\mathrm{b}}$$

46. Correct Bernoulli's equation is (symbols have their usual meaning) :

(1) P + mgh +
$$\frac{1}{2}$$
 mv² = constant
(2) P + ρ gh + $\frac{1}{2}$ ρ v² = constant
(3) P + ρ gh + ρ v² = constant
(4) P + $\frac{1}{2}$ ρ gh + $\frac{1}{2}$ ρ v² = constant

Ans. (2)

Sol. $P + \rho gh + \frac{1}{2}\rho V^2 = constant$

47. A player caught a cricket ball of mass 150 g moving at a speed of 20 m/s. If the catching process is completed in 0.1 s, the magnitude of force exerted by the ball on the hand of the player is:

Ans. (3)

Sol.
$$F = \frac{\Delta P}{\Delta t} = \frac{mv - 0}{0.1}$$

= $\frac{150 \times 10^{-3} \times 20}{0.1} = 30 \text{ N}$

- **48.** A stationary particle breaks into two parts of masses m_A and m_B which move with velocities v_A and v_B respectively. The ratio of their kinetic energies ($K_B : K_A$) is :
 - (1) $v_B : v_A$ (2) $m_B : m_A$ (3) $m_B v_B : m_A v_A$ (4) 1 : 1
- Ans. (1)
- Sol. Initial momentum is zero.

Hence
$$|P_A| = |P_B|$$

 $\Rightarrow m_A v_B = m_B V_B$
 $\frac{(KE)_A}{(KE)_B} = \frac{\frac{1}{2}m_A v_A^2}{\frac{1}{2}m_B v_B^2} = \frac{v_A}{v_B}$
 $\frac{(KE)_B}{(KE)_A} = \frac{v_B}{v_A}$

49. Critical angle of incidence for a pair of optical media is 45°. The refractive indices of first and second media are in the ratio:

(1) $\sqrt{2}$:1 (2) 1:2 (3) 1: $\sqrt{2}$ (4) 2:1

Ans. (1)

Sol.
$$\sin\theta_c = \frac{\mu_R}{\mu_d} = \frac{\mu_2}{\mu_1}$$

 $\sin 45^\circ = \frac{\mu_2}{\mu_1}$
 $\Rightarrow \frac{1}{\sqrt{2}} = \frac{\mu_2}{\mu_1}$
 $\Rightarrow \frac{\mu_1}{\mu_2} = \frac{\sqrt{2}}{1}$

50. The diameter of a sphere is measured using a vernier caliper whose 9 divisions of main scale are equal to 10 divisions of vernier scale. The shortest division on the main scale is equal to 1 mm. The main scale reading is 2 cm and second division of vernier scale coincides with a division on main scale. If mass of the sphere is 8.635 g, the density of the sphere is:

(1) 2.5 g/cm ³	(2) 1.7 g/cm ³
(3) 2.2 g/cm ³	(4) 2.0 g/cm ³

Ans. (4)

Sol. Given 9MSD = 10VSDmass = 8.635 g

$$LC = 1 MSD - 1 VSD$$

$$LC = 1 MSD - \frac{9}{10} MSD$$

$$LC = \frac{1}{10}MSD$$

LC = 0.01 cm

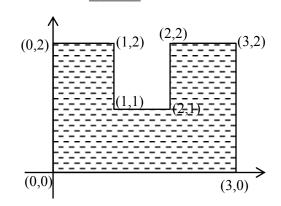
Reading of diameter = MSR + LC × VSR
= 2 cm + (0.01) × (2)
= 2.02 cm
Volume of sphere =
$$\frac{4}{3}\pi \left(\frac{d}{2}\right)^3 = \frac{4}{3}\pi \left(\frac{2.02}{2}\right)^3$$

= 4.32 cm³
Density = $\frac{\text{mass}}{2} = \frac{8.635}{2} = 1.998 \approx 2.00 \text{ g}$

Density = $\frac{\text{mass}}{\text{volume}} = \frac{8.635}{4.32} = 1.998 \sim 2.00 \text{ g}$

SECTION-B

51. A uniform thin metal plate of mass 10 kg with dimensions is shown. The ratio of x and y coordinates of center of mass of plate in $\frac{n}{9}$. The value of n is _____.



Ans. (15)

Sol.
$$m_1 = \sigma \times 5 = 10 \text{ Kg}$$

$$m_1 = \sigma \times 5 = 10 \text{Kg}$$

$$m_2 = \sigma \times 1 = 2 \text{Kg}$$

$$m_2 = \sigma \times 1 = 2 \text{Kg}$$

$$m_2 = \sigma \times 1 = 2 \text{Kg}$$

$$m_{3} = \sigma \times 6 = 12 \text{Kg}$$

$$=$$

$$(0, 0)$$

$$\Rightarrow m_1 x_1 + m_2 x_2 = m_3 x_3$$

$$10x_1 + 2(1.5) = 12(1.5) \Rightarrow x_1 = 1.5 \text{ cm}$$

$$\Rightarrow m_1 y_1 + m_2 y_2 = m_3 y_3$$

$$10y_1 + 2(1.5) = 12 \times 1 \Rightarrow y_1 = 0.9 \text{ cm}$$

$$\frac{x_1}{y_1} = \frac{1.5}{0.9} = \frac{15}{9}$$

$$n = 15$$

52. An electron with kinetic energy 5 eV enters a region of uniform magnetic field of 3 μ T perpendicular to its direction. An electric field E is applied perpendicular to the direction of velocity and magnetic field. The value of E, so that electron moves along the same path, is _____ NC^{-1}. (Given, mass of electron = 9 × 10⁻³¹ kg, electric charge = 1.6 × 10⁻¹⁹C)

Ans. (4)

Sol. For the given condition of moving undeflected, net force should be zero.

$$qE = qVB$$

$$E = VB$$

$$= \sqrt{\frac{2 \times KE}{m}} \times B$$

$$= \sqrt{\frac{2 \times 5 \times 1.6 \times 10^{-19}}{9 \times 10^{-31}}} \times 3 \times 10^{-6}$$

$$= 4 \text{ N/C}$$

53. A square loop PQRS having 10 turns, area 3.6×10^{-3} m² and resistance 100 Ω is slowly and uniformly being pulled out of a uniform magnetic field of magnitude B = 0.5 T as shown. Work done in pulling the loop out of the field in 1.0 s is $\times 10^{-6}$ J.

$$\overbrace{\mathcal{V}}^{\mathsf{X}} \xrightarrow{\mathsf{X}} \xrightarrow{\mathsf{X}}} \xrightarrow{\mathsf{X}} \xrightarrow{\mathsf{X}} \xrightarrow{\mathsf{X}} \xrightarrow{\mathsf{X}} \xrightarrow{\mathsf{X}} \xrightarrow{X} \xrightarrow{\mathsf{X}} \xrightarrow{\mathsf{X}}$$

Ans. (3)

Sol. $\in = NB\ell v$

$$i = \frac{\epsilon}{R} = \frac{NB\ell v}{R}$$
$$F = N(i\ell B) = \frac{N^2 B^2 \ell^2}{R}$$

$$W = F \times \ell = \frac{N^2 B^2 \ell^3}{R} \left(\frac{\ell}{t}\right)$$
$$A = \ell^2$$
$$W = \frac{(10 \times 10)(0.5)^2 \times (3.6 \times 10^{-3})^2}{100 \times 1}$$

$$W = 3.24 \times 10^{-6} J$$

54. Resistance of a wire at 0 °C, 100 °C and t °C is found to be 10Ω , 10.2Ω and 10.95Ω respectively. The temperature t in Kelvin scale is_____.

Ans. (748)

Sol.
$$R = R_0(1 + \alpha \Delta T)$$

 $\frac{\Delta R}{R_0} = \alpha \Delta T$
Case-I
 $0 \,^{\circ}C \rightarrow 100 \,^{\circ}C$
 $\frac{10.2 - 10}{10} = \alpha(100 - 0) \qquad \dots (1)$
Case-II
 $0 \,^{\circ}C \rightarrow t \,^{\circ}C$
 $\frac{10.95 - 10}{10} = \alpha(t - 0) \qquad \dots (2)$
 $\Rightarrow \frac{t}{100} = \frac{0.95}{0.2} = 475 \,^{\circ}C$
 $t = 475 + 273 = 748 \, K$

55. An electric field, $\vec{E} = \frac{2i+6j+8k}{\sqrt{6}}$ passes through the surface of 4 m² area having unit vector $\hat{n} = \left(\frac{2\hat{i}+\hat{j}+\hat{k}}{\sqrt{6}}\right)$. The electric flux for that surface is _____ V m.

Ans. (12)

Sol.
$$\phi = \hat{E} \cdot \hat{A}$$

$$= \left(\frac{2\hat{i} + 6\hat{j} + 8\hat{k}}{\sqrt{6}}\right) \cdot 4\left(\frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}}\right)$$
$$= \frac{4}{6} \times (4 + 6 + 8) = 12 \text{ Vm}$$

56. A liquid column of height 0.04 cm balances excess pressure of soap bubble of certain radius. If density of liquid is 8×10^3 kg m⁻³ and surface tension of soap solution is 0.28 Nm⁻¹, then diameter of the soap bubble is _____ cm.

$$(if g = 10 ms^{-2})$$

4S

Ans. (7)

Sol.
$$\rho gh = \frac{43}{R}$$

 $\Rightarrow R = \frac{4 \times 0.28}{8 \times 10^3 \times 10 \times 4 \times 10^{-4}}$
 $\Rightarrow \frac{0.28}{8} m = \frac{28}{8} cm$
 $\Rightarrow R = 3.5 cm$
Diameter = 7 cm

57. A closed and an open organ pipe have same lengths. If the ratio of frequencies of their seventh overtones is $\left(\frac{a-1}{a}\right)$ then the value of a is _____.

Ans. (16)

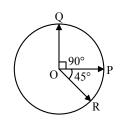
Sol. For closed organ pipe

$$f_{c} = (2n+1)\frac{v}{4\ell} = \frac{15}{4\ell}$$

For open organ pipe

$$f_o = (n+1)\frac{v}{2\ell} = \frac{8v}{2\ell}$$
$$\frac{f_o}{f_o} = \frac{15}{16} = \frac{a-1}{a}$$
$$\Rightarrow a = 16$$

58. Three vectors $\overrightarrow{OP}, \overrightarrow{OQ}$ and \overrightarrow{OR} each of magnitude A are acting as shown in figure. The resultant of the three vectors is $A\sqrt{x}$. The value of x is _____.



Ans. (3)

Sol.

$$\vec{R} = \left(A + \frac{A}{\sqrt{2}}\right)\hat{i} + \left(A - \frac{A}{\sqrt{2}}\right)\hat{j}$$
$$|\vec{R}| = \sqrt{\left(A + \frac{A}{\sqrt{2}}\right)^2 + \left(A - \frac{A}{\sqrt{2}}\right)^2} = \sqrt{3}A$$

59. A parallel beam of monochromatic light of wavelength 600 nm passes through single slit of 0.4 mm width. Angular divergence corresponding to second order minima would be $___\times10^{-3}$ rad.

Ans. (6)

Sol.
$$\sin \theta \simeq \theta \simeq \frac{2\lambda}{b}$$

= $\frac{2 \times 600 \times 10^{-9}}{4 \times 10^{-4}} = 3 \times 10^{-3}$ rad

Total divergence = $(3 + 3) \times 10^{-3} = 6 \times 10^{-3}$ rad

60. In an alpha particle scattering experiment distance of closest approach for the α particle is 4.5×10^{-14} m. If target nucleus has atomic number 80, then maximum velocity of α -particle is _____× 10⁵ m/s approximately.

$$\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ SI unit, mass of } \alpha \text{ particle} = 6.72 \times 10^{-27} \text{ kg}\right)$$

Sol.
$$v = \sqrt{\frac{4KZe^2}{mr_{min}}}$$

= $\sqrt{\frac{4 \times 9 \times 10^9 \times 80}{6.72 \times 10^{-27} \times 4.5 \times 10^{-14}}} \times 1.6 \times 10^{-19}$
= 9.759 × 10²⁵ × 1.6 × 10⁻¹⁹
= 156 × 10⁵ m/s

CHEMISTRY

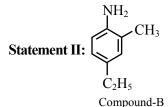
SECTION-A

61. Given below are two statements:

Statement I :

O₂N Compound-A

IUPAC name of Compound A is 4-chloro-1, 3-dinitrobenzene:



IUPAC name of Compound B is

4-ethyl-2-methylaniline.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Both Statement I and Statement II are correct
- (2) Statement I is incorrect but Statement II is correct
- (3) Statement I is correct but Statement II is incorrect
- (4) Both Statement I and Statement II are incorrect **Ans. (2)**

6

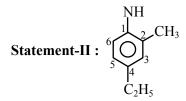
Cl

Sol. Statement I :

$$: O_2 N 4 2 NO_2$$

IUPAC name

- \Rightarrow 1-chloro-2, 4-dinitrobenzene
- \Rightarrow statement-I is incorrect

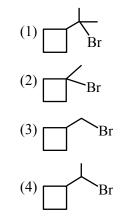


 \Rightarrow 4-ethyl-2-methylaniline

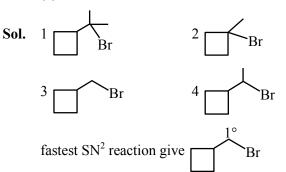
 \Rightarrow statement-II is correct

TEST PAPER WITH SOLUTION

62. Which among the following compounds will undergo fastest $S_N 2$ reaction.



Ans. (3)



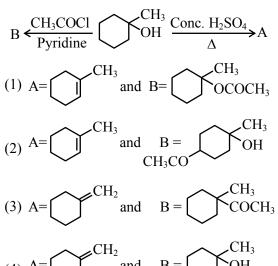
Rate of SN² is Me – x > 1° – x > 2° – x > 3° – x

- 63. Combustion of glucose ($C_6H_{12}O_6$) produces CO_2 and water. The amount of oxygen (in g) required for the complete combustion of 900 g of glucose is: [Molar mass of glucose in g mol⁻¹ = 180]
 - (1) 480 (2) 960

Ans. (2)

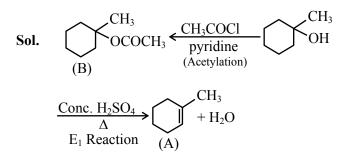
Sol. $C_6H_{12}O_{6(s)} + 6O_{2(g)} \longrightarrow 6CO_{2(g)} + 6H_2O_{(\ell)}$

 $\frac{900}{180}$ = 5 mol 30 mol Mass of O₂ required = 30 × 32 = 960 gm **64.** Identify the major products A and B respectively in the following set of reactions.



(4) $A = \bigcirc OH_2$ and $B = \bigcirc OH_COCH_3$

Ans. (1)



65. Given below are two statements : One is labelled as Assertion A and the other is labelled as Reason R: Assertion A : The stability order of +1 oxidation state of Ga, In and Tl is Ga < In < Tl.

Reason R : The inert pair effect stabilizes the lower oxidation state down the group.

In the light of the above statements, choose the *correct* answer from the options given below :

- Both A and R are true and R is the correct explanation of A.
- (2) **A** is true but **R** is false.
- (3) Both A and R are true but R is NOT the correct explanation of A.
- (4) **A** is false but **R** is true.

Ans. (1)

Sol. The relative stability of +1 oxidation state progressively increases for heavier elements due to inert pair effect.

 \therefore Stability of $A\ell^{+1} < Ga^{+1} < In^{+1} < T\ell^{+1}$

66. Match List I with List-II

	List-I	List-II	
(Na	ame of the test)	(Reaction sequence involved)	
			[M is metal]
A	Borax bead	I.	$MCO_3 \rightarrow MO$
	test		$\xrightarrow{\text{Co(NO}_3)_2} \text{CoO. MO}$
B.	Charcoal	II.	$MCO_3 \rightarrow MCl_2 \rightarrow M^{2+}$
	cavity test		
C.	Cobalt nitrate	III	$MSO_4 \frac{Na_2B_4O_7}{A}$
	test		Δ
			$M(BO_2)_2 \rightarrow MBO_2 \rightarrow M$
D.	Flame test	IV	$MSO_4 \xrightarrow{Na_2CO_3} MCO_3 \rightarrow \Delta$
			$MO \rightarrow M$

Choose the **correct** answer from the option below :

(1) A-III, B-I, C-IV, D-II
 (2) A-III, B-II, C-IV, D-I
 (3) A-III, B-I, C-II, D-IV

(4) A-III, B-IV, C-I, D-II

Ans. (4)

Sol. Cobalt nitrate test

MCO₃
$$\rightarrow$$
 MO $\xrightarrow{\text{Co(NO_3)}_2}$ CoO. MO

Flame test

 $MCO_3 \rightarrow MCl_2 \rightarrow M^{2+}$

Borax Bead test

$$MSO_4 \xrightarrow{Na_2B_4O_7} M(BO_2)_2 \rightarrow MBO_2 \rightarrow M$$

Charcoal cavity test

$$MSO_4 \xrightarrow{Na_2CO_3} MCO_3 \rightarrow MO \rightarrow M$$

67. Match List I and with List II

List-I (Molecule)		List-II(Shape)	
А	NH ₃	I.	Square pyramid
B.	BrF ₅	II.	Tetrahedral
C.	PCl ₅	III	Trigonal pyramidal
D.	CH ₄	IV	Trigonal bipyramidal

Choose the correct answer from the option below :

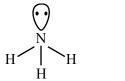
(1) A-IV, B-III, C-I, D-II

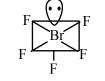
(2) A-II, B-IV, C-I, D-III

- (3) A-III, B-I, C-IV, D-II
- (4) A-III, B-IV, C-I, D-II

Ans. (3)

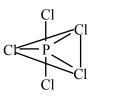
Sol.





Square pyramidal

Trigonal pyramidal



4

Trigonal bipyramidal Tetrahedral

68. For the given hypothetical reactions, the equilibrium constants are as follows:

$$X \Longrightarrow Y; K_1 = 1.0$$

$$Y \Longrightarrow Z; K_2 = 2.0$$

$$Z \implies W; K_3 = 4.0$$

The equilibrium constant for the reaction

$$X \Longrightarrow W$$
 is

Ans.

Sol.

(1) 6.0	(2) 12.0
(3) 8.0	(4) 7.0
(3)	
X⇔Y	$k_1 = 1$
Y≓Z	$k_2 = 2$
$Z \rightleftharpoons \omega$	$k_3 = 4$
$X \rightleftharpoons \omega$	$k_1\cdot k_2\cdot k_3$
	$k = 1 \times 2 \times$
	k = 8

69. Thiosulphate reacts differently with iodine and bromine in the reaction given below :

$$2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-$$

 $S_2O_3^{2-} + 5Br_2 + 5H_2O \rightarrow 2SO_4^{2-} + 4Br^- + 10H^+$

Which of the following statement justifies the above dual behaviour of thiosulphate?

- Bromine undergoes oxidation and iodine undergoes reduction by iodine in these reactions
- (2) Thiosulphate undergoes oxidation by bromine and reduction by iodine in these reaction
- (3) Bromine is a stronger oxidant than iodine
- (4) Bromine is a weaker oxidant than iodine

Ans. (3)

Sol. In the reaction of $S_2O_3^{2-}$ with I_2 , oxidation state of sulphur changes to +2 to +2.5 In the reaction of $S_2O_3^{2-}$ with Br_2 , oxidation state of sulphur changes from +2 to +6.

> \therefore Both I₂ and Br₂ are oxidant (oxidising agent) and Br₂ is stronger oxidant than I₂.

70. An octahedral complex with the formula $CoCl_3nNH_3$ upon reaction with excess of AgNO₃ solution given 2 moles of AgCl. Consider the oxidation state of Co in the complex is 'x'. The value of "x + n" is _____.

Ans. (3)

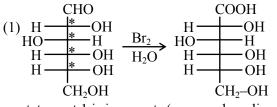
Sol. $\begin{bmatrix} c_0^{+3}(NH_3)_5 Cl \end{bmatrix} Cl_2 + excess AgNO_3 \longrightarrow 2AgCl$ (2 moles) x + 0 - 1 - 2 = 0 x = +3 n = 5 $\therefore x + n = 8$

The **incorrect** statement regarding the given structure is

- (1) Can be oxidized to a dicarboxylic acid with Br₂ water
- (2) despite the presence of CHO does not give Schiff's test
- (3) has 4-asymmetric carbon atom
- (4) will coexist in equilibrium with 2 other cyclic structure

Ans. (1)

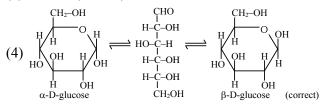
Sol.



statement 1 is incorrect (monocarboxylic acid)

(2) correct

(3) c.c. is 4 (correct)



72. In the given compound, the number of 2° carbon atom/s is

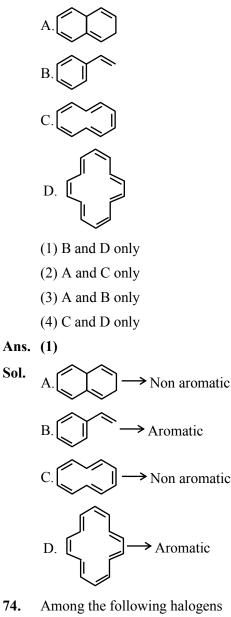
$$\begin{array}{c} CH_3-C(CH_3)-CH-C(CH_3)-CH_3\\ I\\H\\H\\H\\\end{array}$$
(1) Three
(2) One
(3) Two
(4) Four

Ans. (2)

Sol. $\stackrel{1^{\circ}}{\underset{CH_{3}-C}{\overset{1^{\circ}}{\underset{CH_{3}-C}{\overset{2^{\circ}}{\underset{CH_{3}-C}{I}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }$

only one 2° carbon is present in this compound.

73. Which of the following are aromatic?



- 74. Among the following halogens

 F₂, Cl₂, Br₂ and I₂
 Which can undergo disproportionation reaction?
 (1) Only I₂
 (2) Cl₂, Br₂ and I₂
 (3) F₂, Cl₂ and Br₂
 (4) F₂ and Cl₂

 Ans. (2)
- Sol. F₂ do not disproportionate because fluorine do not exist in positive oxidation state however Cl₂, Br₂ & I₂ undergoes disproportionation.

75. Given below are two statements:

Statement I : $N(CH_3)_3$ and $P(CH_3)_3$ can act as ligands to form transition metal complexes.

Statement II: As N and P are from same group, the nature of bonding of $N(CH_3)_3$ and $P(CH_3)_3$ is always same with transition metals.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are correct
- (3) Statement I is correct but Statement II is incorrect
- (4) Both Statement I and Statement II are incorrect

Ans. (3)

Sol. N(CH₃)₃ and P(CH₃)₃ both are Lewis base and acts as ligand, However, P(CH₃)₃ has a π -acceptor character.

76. Match List I with List II

Lis	st-I (Elements)	List-II(Properties in		
		their respective groups)		
А	Cl,S	I.	Elements with highest	
			electronegativity	
B.	Ge, As	II.	Elements with largest	
			atomic size	
C.	Fr, Ra	III	Elements which show	
			properties of both	
			metals and non metal	
D.	F, O	IV	Elements with highest	
			negative electron gain	
			enthalpy	

Choose the **correct** answer from the options given below :

- (1) A-II, B-III, C-IV, D-I
- (2) A-III, B-II, C-I, D-IV
- (3) A-IV, B-III, C-II, D-I (4) A-II, B-I, C-IV, D-III

Ans. (3)

Sol. Elements with highest electronegativity \rightarrow F, O

Elements with largest atomic size \rightarrow Fr, Ra

Elements which shows properties of both metal and non-metals i.e. metalloids \rightarrow Ge, As

Elements with highest negative electron gain enthalpy \rightarrow Cl, S

77. Iron (III) catalyses the reaction between iodide and persulphate ions, in which
A. Fe³⁺ oxidises the iodide ion
B. Fe³⁺ oxidises the persulphate ion
C. Fe²⁺ reduces the iodide ion
D. Fe²⁺ reduces the persulphate ion
Choose the most appropriate answer from the options given below:
(1) B and C only
(2) B only
(3) A only
(4) A and D only

Ans. (4)

Sol. $2Fe^{3+} + 2I^- \longrightarrow 2Fe^{2+} + I_2$ $2Fe^{2+} + S_2O_8^{2-} \longrightarrow 2Fe^{3+} + 2SO_4^{2-}$ Fe^{+3} oxidises I^- to I_2 and convert in

 Fe^{+3} oxidises I^- to I_2 and convert itself into Fe^{+2} . This Fe^{+2} reduces $S_2O_8^{2-}$ to SO_4^{2-} and converts itself into Fe^{+3} .

78. Match List I with List II

Ι	List-I (Compound)		List-II	
		(Colour)		
А	Fe ₄ [Fe(CN) ₆] ₃ .xH ₂ O	I.	Violet	
B.	[Fe(CN) ₅ NOS] ⁴⁻	II.	Blood Red	
C.	$[Fe(SCN)]^{2+}$	III.	Prussian Blue	
D.	(NH ₄) ₃ PO ₄ .12MoO ₃	IV.	Yellow	

Choose the **correct** answer from the options given below :

- (1) A-III, B-I, C-II, D-IV (2) A-IV, B-I, C-II, D-III
- (3) A-II, B-III, C-IV, D-I
- (4) A-I, B-II, C-III, D-IV

Ans. (1)

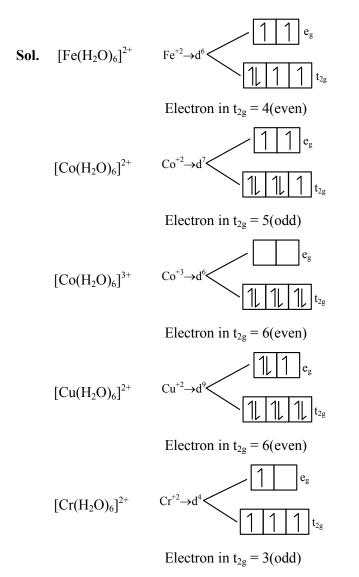
Sol. $Fe_4[Fe(CN)_6]_3 .xH_2O \rightarrow Prussian Blue$ $[Fe(CN)_5NOS]^{4-} \rightarrow Violet$

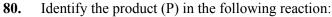
 $[Fe(SCN)]^{2+} \rightarrow Blood Red$

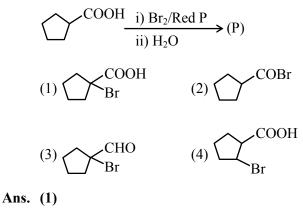
 $(NH_4)_3PO_4.12MoO_3 \rightarrow Yellow$

79. Number of complexes with even number of
electrons in t_{2g} orbitals is -
 $[Fe(H_2O)_6]^{2+}$, $[Co(H_2O)_6]^{2+}$, $[Co(H_2O)_6]^{3+}$,
 $[Cu(H_2O)_6]^{2+}$, $[Cr(H_2O)_6]^{2+}$
(1) 1
(2) 3
(3) 2
(4) 5

Ans. (2)





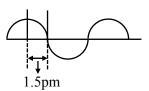


Sol. HVZ Reaction

$$\underbrace{\bigcirc}^{\text{COOH}} \xrightarrow{\text{i) } \text{Br}_2/\text{Red } P} \underbrace{\bigcirc}^{\text{COOH}}_{\text{Br}}$$

SECTION-B

81. A hypothetical electromagnetic wave is show below.



The frequency of the wave is $x \times 10^{19}$ Hz.

x = ____ (nearest integer)

Ans. (5)

Sol.
$$\lambda = 1.5 \times 4 \text{ pm}$$

 $= 6 \times 10^{-12} \text{ meter}$
 $\lambda v = C$
 $6 \times 10^{-12} \times v = 3 \times 10^8$
 $v = 5 \times 10^{19} \text{ Hz}$
82. B
 $y = 0 \text{ L}$
 $y = 0 \text{$

Consider the figure provided.

1 mol of an ideal gas is kept in a cylinder, fitted with a piston, at the position A, at 18°C. If the piston is moved to position B, keeping the temperature unchanged, then 'x' L atm work is done in this reversible process.

 $x = ____ L atm. (nearest integer)$

[Given : Absolute temperature = $^{\circ}C$ + 273.15, R = 0.08206 L atm mol⁻¹ K⁻¹]

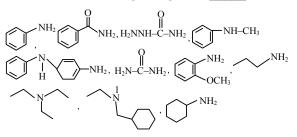
Ans. (55)

Sol.
$$\omega = -nRT \ln\left(\frac{V_2}{V_1}\right)$$

= $-1 \times .08206 \times 291.15 \ln\left(\frac{100}{10}\right)$
= -55.0128
Work done by system ~ 55 atm lit

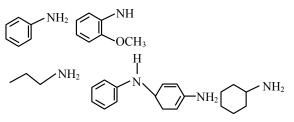
Work done by system ≈ 55 atm lit.

83. Number of amine compounds from the following giving solids which are soluble in NaOH upon reaction with Hinsberg's reagent is _____.

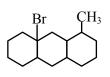


Ans. (5)

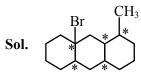
Sol. Primary amine give an ionic solid upon reaction with Hinsberg reagent which is soluble in NaOH.



84. The number of optical isomers in following compound is : _____.



Ans. (32)



Total chiral centre = 5

No. of optical isomers $= 2^5 = 32$.

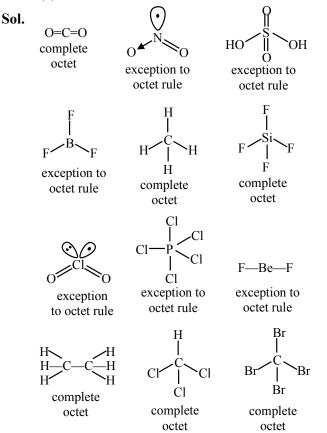
85. The 'spin only' magnetic moment value of MO_4^{2-} is ______ BM. (Where M is a metal having least metallic radii. among Sc, Ti, V, Cr, Mn and Zn). (Given atomic number : Sc = 21, Ti = 22, V = 23, Cr = 24, Mn = 25 and Zn = 30)

Ans. (0)

Sol. Metal having least metallic radii among Sc, Ti, V, Cr, Mn & Zn is Cr. Spin only magnetic moment of CrO₄²⁻.

Here Cr^{+6} is in d^0 configuration (diamagnetic).

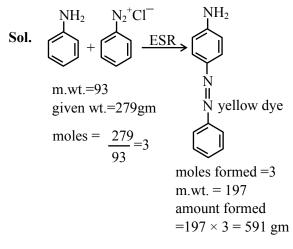
86. Number of molecules from the following which are exceptions to octet rule is _____.
CO₂, NO₂, H₂SO₄, BF₃, CH₄, SiF₄, ClO₂, PCl₅, BeF₂, C₂H₆, CHCl₃, CBr₄



87. If 279 g of aniline is reacted with one equivalent of benzenediazonium chloride, the mximum amount of aniline yellow formed will be _____ g. (nearest integer)

(consider complete conversion)

Ans. (591)



88. Consider the following reaction $A + B \rightarrow C$

The time taken for A to become $1/4^{\text{th}}$ of its initial concentration is twice the time taken to become 1/2 of the same. Also, when the change of concentration of B is plotted against time, the resulting graph gives a straight line with a negative slope and a positive intercept on the concentration axis.

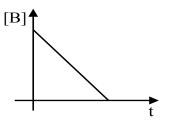
The overall order of the reaction is _____.

Ans. (1)

Sol. For 1st order reaction

75% life = $2 \times 50\%$ life

So order with respect to A will be first order.



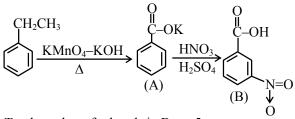
So order with respect to B will be zero. Overall order of reaction = 1 + 0 = 1

89. Major product B of the following reaction has π -bond.

 $(B) \xrightarrow{\text{CH}_2\text{CH}_3} (A) \xrightarrow{\text{KMnO}_4 - \text{KOH}} (B)$

Ans. (5)

Sol. Major product B is \rightarrow



Total number of π bonds in B are 5

90. A solution containing 10g of an electrolyte AB₂ in 100g of water boils at 100.52°C. The degree of ionization of the electrolyte (α) is _____ × 10⁻¹. (nearest integer)
[Given : Molar mass of AB₂ = 200g mol⁻¹. K_b (molal boiling point elevation const. of water) = 0.52 K kg mol⁻¹, boiling point of water = 100°C ; AB₂ ionises as AB₂ → A²⁺ + 2B⁻]

Sol.
$$AB_2 \rightarrow A^{+2} + 2B^{\in}$$

$$i = 1 + (3 - 1) \alpha$$

$$i = 1 + 2\alpha$$

$$\Delta T_{b} = k_{b} \text{ im}$$

$$0.52 = 0.52 (1 + 2\alpha) \frac{\frac{10}{200}}{\frac{100}{1000}}$$

$$1 = (1 + 2\alpha) \frac{10}{20}$$

$$2 = 1 + 2\alpha$$

$$\alpha = 0.5$$

Ans. $\alpha = 5 \times 10^{-1}$